Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prime: Advances in...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
e-Prime: Advances in Electrical Engineering, Electronics and Energy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flexible horizontal piezoelectric energy generator for sea wave applications

Authors: A.S. Deraman; M.R. Mohamed; W.I. Ibrahim; P.K. Leung;

Flexible horizontal piezoelectric energy generator for sea wave applications

Abstract

Energy harvesting from the environment becomes a valuable technology, especially for sea wave applications, in which it usually ends up wasted despite its potential to be harvested. Due to its wide availability and high energy density, piezoelectric energy harvesting (PEH) is becoming popular for flexible energy harvesting. This paper presents a flexible horizontal piezoelectric (FHP) energy harvester to harvest energy from the surface of sea wave. The harvester is made of bimorph piezoelectric devices; they are utilised to amplify and convert the collected mechanical vibrations into electrical power. A finite element model is established from ANSYS simulations to solve the iteration method by generating resonance frequency (fr). Then, Taguchi method, SN ratio and the ANOVA approach were used by considering the input variable of fr to estimate the optimum performance through control factors; number of blade, length and thickness. From the performance test result, it is proven that the higher numbers of blade including length, and minimum numbers of thickness significantly improve the significant level, α = 0.05% of ANOVA. Three prototypes are developed with approximate body dimensions through the resonance frequency perform and generate a 160.3 Hz on blade dimensions of 10 × 300 × 0.2 mm, with a piezoelectric (PZT) on its surface. This particular study shows that the potential of output power is generated from sea wave surface through a significant relationship between length, thickness, and blade design. This research develops a novelty for energy harvesting from flexible piezoelectric generator on sea wave application that could be easily install on offshore platform.

Keywords

ANSYS, Bimorph piezoelectric, Energy harvesting, Electrical engineering. Electronics. Nuclear engineering, Flexible horizontal piezoelectric, Sea wave, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold
Related to Research communities
Energy Research