Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the Combustion Institute
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Combustion Institute
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Apollo
Article . 2014
License: CC BY NC ND
Data sources: Apollo
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The response of stratified swirling flames to acoustic forcing: Experiments and comparison to model

Authors: Han, Zhiyi; Hochgreb, Simone;

The response of stratified swirling flames to acoustic forcing: Experiments and comparison to model

Abstract

The gradient of local equivalence ratio in reacting mixtures significantly affects the flame structure and their corresponding response to acoustic velocity perturbations. We study the effect of acoustic velocity fluctuations on flames created by two co-annular, swirling streams with different equivalence ratios to simulate the effects of pilot-mains split. The flames are stabilized both by a bluff body and by swirl. The flame responses were measured via chemiluminescence as a function of frequency, in the linear perturbation range. A linearized version of the G-equation model is employed to describe the flame dynamics, combined with effects of axial and azimuthal velocity perturbations downstream of the swirlers. The model accounts for the phase shift between the main acoustic and swirler vortical perturbations, which propagate at different speeds. The very different flame structures generated by different fuel splits lead to different flame responses. Models based on time delay of vortical disturbances are able to capture the behavior reasonably well for the case of outer fuel enrichment, but offer limited agreement for the case of the inner enriched flame, particularly under higher mean equivalence ratios.

Country
United Kingdom
Related Organizations
Keywords

G-equation, Flame transfer function, Stratified turbulent flame, Combustion instabilities

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Green
hybrid