Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Combustion Institute
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
http://dx.doi.org/10.1016/j.pr...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonlinear analysis of self-sustained oscillations in an annular combustor model with electroacoustic feedback

Authors: Humbert, Sylvain C.; Gensini, Fabio; Andreini, Antonio; Paschereit, Christian O.; Orchini, Alessandro;

Nonlinear analysis of self-sustained oscillations in an annular combustor model with electroacoustic feedback

Abstract

Abstract Self-excited pressure oscillations can occur in combustion systems due to the thermoacoustic coupling between the unsteady acoustics and flame heat release fluctuations. Usually, the knowledge of a Flame Transfer Function is used to predict the onset of thermoacoustic instabilities. However, it is also possible to take advantage of it to model a flame response and study experimentally thermoacoustic phenomena without flames. This is exploited in the present study, in which a novel annular setup for the study of thermoacoustics in annular combustors is presented. The thermoacoustic feedback is replaced by electroacoustic feedback. The pressure fluctuations, measured by a microphone, are delayed and filtered and then sent to a loudspeaker, which produces acoustic perturbations, closing the loop. Each flame model parameter can be varied in a flexible way, which allows to choose combinations of parameters that generate modal behaviours of interest in the experiments. For example, this setup can trigger on demand various configurations which exhibit multiple unstable modes, leading to diverse modal competition scenarios. This allows to assess the multi-input Describing Function method, which is used to predict the frequency and amplitude of each mode contributing to thermoacoustic oscillations, when multiple modes are linearly unstable. The experimental validation of predictions from this method, which can be somewhat cumbersome and expensive in the presence of flames, is facilitated by this setup, in which all parameters and boundary conditions are well known and the noise remains negligible. Prediction uncertainties connected to approximations intrinsic of this method when operating in the vicinity of bifurcation points are also discussed.

Country
Italy
Keywords

Flame multi-input Describing Function, Nonlinear modal coupling, Annular combustor; Electroacoustic feedback; Flame multi-input Describing Function; Nonlinear modal coupling; Thermoacoustic oscillations, Electroacoustic feedback, Thermoacoustic oscillations, Annular combustor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 5
  • 2
    views
    5
    downloads
    Data sourceViewsDownloads
    ZENODO25
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
Top 10%
Average
Top 10%
2
5
Green