
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A case study of avoiding the heat-related mortality impacts of climate change under mitigation scenarios

AbstractWe compare heat-related mortality impacts for three European cities, London, Lisbon and Budapest, under five climate change policies representing different dates at which carbon dioxide (CO2) emissions peak, rates at which emissions decline, and emissions floors, and compare them with a non-mitigation business-as-usual emissions scenario, for three time periods, the 2030s, 2050s and 2080s. Under an SRES A1B business-as-usual emissions scenario and using climate projections from 21 GCMs, heat-related mortality rates (per 100,000 of the population) attributable to climate change in the 2080s are simulated to be in the range 2-6 for London, 4-50 for Lisbon and 10-24 for Budapest. Whilst the policy scenarios serve to reduce the number of heat-related deaths attributable to climate change, by up to 70% of the A1B impacts under an aggressive mitigation scenario that gives a 50% chance of avoiding a 2°C global-mean temperature rise from pre-industrial times, they do not eradicate the effects of climate change on heat-related mortality. The magnitude of avoided impacts is minor in the early 21st century but increases towards the end of the century. Importantly, the magnitude of avoided impacts is more sensitive to the year at which emissions are reduced than to the rate at which emissions are reduced.
- University of Reading United Kingdom
- University of Reading United Kingdom
- Met Office United Kingdom
- Met Office United Kingdom
avoided impacts, climate policy, heat-related mortality, Climate change, uncertainty
avoided impacts, climate policy, heat-related mortality, Climate change, uncertainty
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
