Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Process Safety and E...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Process Safety and Environmental Protection
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation and integration of energy utilization in a process system through material flow analysis coupled with exergy flow analysis

Authors: Yongzhong Liu; Yongzhong Liu; Feifei Yang;

Evaluation and integration of energy utilization in a process system through material flow analysis coupled with exergy flow analysis

Abstract

Abstract It is of significant importance to evaluate energy consumption and to optimize configuration of energy utilization in process systems. A comprehensive approach based on material flow analysis (MFA) and exergy flow analysis (EFA) is proposed to evaluate energy consumption and integrate energy utilization of a process system, in which energy-consuming devices and exothermic devices exist simultaneously. By using the proposed approach, the energy consumption of streams in the process system is evaluated by energy consumption distribution, and the energy efficiency of the system is improved by both the improvement of local sub-systems and the integration of energy utilization of the entire system. A natural gas purification plant with a processing capacity of 200 × 104 m3/d is taken as the case study to demonstrate the detailed implementation of the proposed approach. Results show that the streams with high energy consumption intensity are indicators of energy-intensive sub-systems, and energy conservation of these sub-systems can dramatically reduce the energy consumption of the system. In this case study, after the process improvement, the energy consumption of the desulfurization sub-system reduces by 9.62%, and the energy consumption of the exhaust gas treatment sub-system reduces by 21.02%. Furthermore, after the integration of heat exchange network of the entire system, the energy consumption of the system reduces by 2.16 × 105 kW. By these from the part to the whole strategies, the total energy-saving can reach 1.07 × 106 kW in the system. The proposed approach can be used for effectively identifying the bottlenecks of the energy consumption and improving the energy utilization of process systems.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average