
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Microbial fuel cells: Insight into simultaneous wastewater treatment and bioelectricity generation

L'industrialisation en plein essor a intensifié la demande d'énergie et amplifié l'insistance sur l'épuisement des réservoirs à base de pétrole. Par la suite, cela a imposé une étude pour identifier les sources alternatives renouvelables. L'utilisation de ressources renouvelables favorise la production d'énergie associée à la durabilité environnementale. Les piles à combustible microbiennes (PFCM) ont un rôle encourageant dans la production d'énergie électrique durable et viable. Il transforme l'énergie chimique en énergie électrique à l'aide de micro-organismes agissant comme biocatalyseurs. Il s'agit d'une technologie émergente qui a le potentiel de traiter simultanément les eaux usées avec la production de bioélectricité. Cependant, la mise à l'échelle de cette technologie est un défi majeur car une pléthore de contraintes techniques limite son application dans le monde réel. Cette revue met en évidence les performances du MFC en termes de production d'énergie en utilisant diverses eaux usées comme substrat. De plus, il met en lumière différents modèles, mécanismes et paramètres MFC affectant les performances MFC ainsi que leurs avantages et inconvénients pour générer une puissance de sortie maximale. Il conclut les moyens possibles de lutter contre ses inconvénients et discute de ses perspectives d'avenir.
La creciente industrialización ha intensificado la demanda de energía y ha amplificado la insistencia en agotar los yacimientos a base de petróleo. Posteriormente, esto ha impuesto un estudio para identificar fuentes alternativas renovables. El empleo de recursos renovables promueve la producción de energía junto con la sostenibilidad ambiental. Las pilas de combustible microbianas (MFC) tienen un papel alentador en la producción de energía eléctrica sostenible y viable. Transforma la energía química en energía eléctrica con la ayuda de microorganismos que actúan como biocatalizadores. Es una tecnología emergente que tiene el potencial de tratar las aguas residuales con la producción de bioelectricidad de forma simultánea. Sin embargo, ampliar esta tecnología es un gran desafío, ya que una gran cantidad de limitaciones técnicas limita su aplicación en el mundo real. Esta revisión destaca el rendimiento de MFC en términos de generación de energía mediante la utilización de varias aguas residuales como sustrato. Además, arroja luz sobre diferentes diseños, mecanismos y parámetros de MFC que afectan el rendimiento de MFC junto con sus ventajas y desventajas para generar la máxima potencia de salida. Concluye posibles formas de combatir sus inconvenientes y discute sus perspectivas de futuro.
Burgeoning industrialization has escalated the energy demand and amplified the insistence on depleting petroleum-based reservoirs. Subsequently, this has imposed a study to pinpoint renewable alternative sources. Employing renewable resources promotes energy production coupled with environmental sustainability. Microbial fuel cells (MFCs) have an encouraging role in producing sustainable and viable electrical energy. It transforms chemical energy into electrical energy with the assistance of microorganisms acting as biocatalysts. It is an emerging technology that has the potential to treat wastewater with bioelectricity production simultaneously. However, scaling up this technology is a major challenge as a plethora of technical constraints limits its application in the real world. This review highlights MFC performance in terms of power generation by utilizing various wastewaters as substrate. Moreover, it sheds light on different MFC designs, mechanisms, and parameters affecting MFC performance along with their pros and cons to generate maximum power output. It concludes possible ways to combat its drawbacks and discusses its future prospects.
أدى التصنيع المزدهر إلى تصعيد الطلب على الطاقة وتضخيم الإصرار على استنفاد الخزانات القائمة على النفط. وفي وقت لاحق، فرض هذا دراسة لتحديد المصادر البديلة المتجددة. يعزز استخدام الموارد المتجددة إنتاج الطاقة إلى جانب الاستدامة البيئية. تلعب خلايا الوقود الميكروبية (MFCs) دورًا مشجعًا في إنتاج طاقة كهربائية مستدامة وقابلة للحياة. فهو يحول الطاقة الكيميائية إلى طاقة كهربائية بمساعدة الكائنات الحية الدقيقة التي تعمل كمحفزات حيوية. إنها تقنية ناشئة لديها القدرة على معالجة مياه الصرف الصحي مع إنتاج الكهرباء الحيوية في وقت واحد. ومع ذلك، فإن توسيع نطاق هذه التكنولوجيا يمثل تحديًا كبيرًا لأن عددًا كبيرًا من القيود التقنية يحد من تطبيقها في العالم الحقيقي. تسلط هذه المراجعة الضوء على أداء MFC من حيث توليد الطاقة من خلال استخدام مياه الصرف الصحي المختلفة كركيزة. علاوة على ذلك، فإنه يلقي الضوء على تصاميم وآليات ومعلمات MFC المختلفة التي تؤثر على أداء MFC جنبًا إلى جنب مع إيجابياتها وسلبياتها لتوليد أقصى قدر من إنتاج الطاقة. ويختتم الطرق الممكنة لمكافحة عيوبه ويناقش آفاقه المستقبلية.
- Government College University, Lahore Pakistan
- Dublin City University Ireland
- Government College University, Lahore Pakistan
Enzymatic Biofuel Cells, Renewable energy, Environmental Engineering, Microbial fuel cell, Environmental economics, Economics, Materials Science, Macroeconomics, Quantum mechanics, Environmental science, Engineering, Electricity, Materials for Electrochemical Supercapacitors, Microbial Fuel Cells, FOS: Electrical engineering, electronic engineering, information engineering, Production (economics), Electrochemical Biosensor Technology, Electrical and Electronic Engineering, Waste management, Biology, Electricity generation, Microbial Fuel Cells and Electrogenic Bacteria Technology, Ecology, Physics, FOS: Environmental engineering, Power (physics), Electronic, Optical and Magnetic Materials, Sewage treatment, Biochemical engineering, Electricity Generation, Sustainability, FOS: Biological sciences, Electrical engineering, Environmental Science, Physical Sciences, Process engineering
Enzymatic Biofuel Cells, Renewable energy, Environmental Engineering, Microbial fuel cell, Environmental economics, Economics, Materials Science, Macroeconomics, Quantum mechanics, Environmental science, Engineering, Electricity, Materials for Electrochemical Supercapacitors, Microbial Fuel Cells, FOS: Electrical engineering, electronic engineering, information engineering, Production (economics), Electrochemical Biosensor Technology, Electrical and Electronic Engineering, Waste management, Biology, Electricity generation, Microbial Fuel Cells and Electrogenic Bacteria Technology, Ecology, Physics, FOS: Environmental engineering, Power (physics), Electronic, Optical and Magnetic Materials, Sewage treatment, Biochemical engineering, Electricity Generation, Sustainability, FOS: Biological sciences, Electrical engineering, Environmental Science, Physical Sciences, Process engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).111 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
