Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wind speed spatial estimation for energy planning in Sicily: A neural kriging application

Authors: CELLURA, Maurizio; CIRRINCIONE, G; MARVUGLIA, Antonino; MIRAOUI, A.;

Wind speed spatial estimation for energy planning in Sicily: A neural kriging application

Abstract

Abstract One of the first steps for the exploitation of any energy source is necessarily represented by its estimation and mapping at the aim of identifying the most suitable areas in terms of energy potential. In the field of renewable energies this is often a very difficult task, because the energy source is in this case characterized by relevant variations over space and time. This implies that any temporal, but also spatial, estimation model has to be able to incorporate this spatial and temporal variability. The paper deals with the spatial estimation of the wind fields in Sicily (Italy) by following a data-driven approach. Starting from the results of a preliminary study, a novel technique resulting from the integration of neural and geostatistical techniques was developed in order to obtain the wind speed maps for the region at 10 and 50 meters above the ground level. The mean values of the theoretical Weibull distribution function describing the wind regime at each of the available measurement sites were used to train a multi-layer perceptron (MLP) whose goal is to compute the most of the wind spatial trends. Other pieces of information about the territory (altitude, land coverage) were also used as inputs of the network and organized into a geographic information system (GIS) environment. The remaining de-trended linear means have been computed by using a universal kriging (UK) estimator. The results of these steps were then summed up and it was thus possible to obtain a map of the estimated wind fields.

Country
Italy
Keywords

neural networks kriging; Sicily; GIS; DEM; wind

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 1%
Top 10%