
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Wind turbines type and number choice using combinatorial optimization
Abstract The paper addresses the problem associated with the optimal wind park design. A combinatorial optimization model for wind turbines type and number choice and placement considering the given wind conditions and wind park area is developed. The wind park investment costs and the total power relation as function of wind turbines number and type are used as optimization criteria. The optimization problem is formulated as a single criterion mixed-integer nonlinear discrete combinatorial task. The different wind park conditions are introduced into optimization tasks formulation as variables relations and restrictions. Two basic wind directions cases are taken into consideration – uniform and predominant wind directions for two wind park area shapes – square and rectangular. The developed wind park design approach was tested numerically by solving of different optimization tasks formulations based on wind turbines real parameters data. The numerical testing shows the applicability of the developed optimization approach. Using it will help to find mathematically reasoned wind turbines choice as contradiction to the heuristic approaches.
- Bulgarian Academy of Sciences Bulgaria
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
