
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biodiesel from mutton fat using KOH impregnated MgO as heterogeneous catalysts

Abstract The use of MgO impregnated with KOH as heterogeneous catalysts for the transesterification of mutton fat with methanol has been evaluated. The mutton fat (fat) with methanol (1:22 M ratio) at 65 °C showed > 98% conversion to biodiesel with 4 wt% of MgO–KOH-20 1 (MgO impregnated with 20 wt% of KOH) in 20 min. The reaction conditions optimized were; the amount of KOH impregnation (5–20 wt%), the amount of catalyst (1.5–4 wt%, catalyst/fat), the reaction temperature (45–65 °C), fat to methanol molar ratio (1:11–1:22) and the effect of addition of water/oleic acid/palmitic acid (upto 1 wt%). Although, transesterification of fresh fat (moisture content 0.02 wt% and free fatty acids 0.002 wt%) with methanol in the presence of KOH (homogenous catalyst) resulted in the complete conversion to biodiesel, but in the presence of additional 1 wt% of either free fatty acid or moisture content, formation of soap was observed. The MgO–KOH-20 catalyst was found to tolerate additional 1 wt% of either the moisture or FFAs in the fat.
- Thapar University India
- Thapar University India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).93 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
