
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A methodology for production and cost assessment of a farm of wave energy converters

To generate a substantial amount of power, Wave Energy Converters (WECs) are arranged in several rows or in a ‘farm’. Both the power production and cost of a farm are lay-out dependent. In this paper, the wave power redistribution in and around three farm lay-outs in a near shore North Sea wave climate, is assessed numerically using a time-dependent mild-slope equation model. The modelling of the wave power redistribution is an efficient tool to assess the power production of a farm. Further, for each lay-out an optimal (low cost) submarine cable network is designed. The methodology to assess the power production and cost of a farm of WECs is applied to the Wave Dragon Wave Energy Converter (WD–WEC). The WD–WEC is a floating offshore converter of the overtopping type, which captures the water volume of overtopped waves in a basin above mean sea level and produces power when the water drains back to the sea through hydro turbines.It is observed that the cable cost is relatively small compared to the cost of the WD–WECs. As a result, WD–WECs should be installed in a lay-out to increase power production rather than decrease cable cost, taking spatial and safety considerations into account. WD–WECs arranged in a single line produce the highest amount of power, but require an available sea area with a large width (51 km). Installing a single line of WD–WECs in front of a farm of wind turbines increases the time window for accessing the wind farm (applied to Horns Rev II – significant wave height smaller than 1–2 m during 8 h at minimum) by 9–14%.
- Ørsted (Denmark) Denmark
- Aalborg University Denmark
- Ghent University Belgium
- Aalborg University Library (AUB) Denmark
- Aalborg University Denmark
Power Production, Cost, Farm, Wave Energy, Wave Dragon, Wave Energy Converters
Power Production, Cost, Farm, Wave Energy, Wave Dragon, Wave Energy Converters
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
