Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental investigation on gasification characteristic of high lignin biomass (Pongamia shells)

Authors: Lalta Prasad; P.M.V. Subbarao; J.P. Subrahmanyam;

Experimental investigation on gasification characteristic of high lignin biomass (Pongamia shells)

Abstract

Abstract Pongamia residue (shells) is the byproduct from the biodiesel processing industry, which is a lignocellulosic biomass material. It is not suitable as feedstock in downdraft wood gasifier due to low bulk density (146 kg/m3) of shells as compared to wood (more than 350 kg/m3). Pelletization and gasification of pelletized shells was carried out in the present work. The heat transfer analysis in pellets of 17 mm and 11.5 mm was also carried out to evaluate thermal properties of this biomass. Shell pellets of 17 mm and 11.5 mm diameter and length in the range of 10–60 mm were gasified in a 20 kWe downdraft wood gasifier. The complete gasification of pellets with 17 mm diameter could not be achieved because of less porosity and presence of larger thermal gradient within the pellets. The gasification efficiency was 73% for 17 mm diameter pellets which is lower than that of 11.5 mm diameter pellets which was 95%. The calorific value of producer gas generated from smaller diameter pellets was higher (4.66 MJ/N m3) as compared to larger diameter pellets (3.98 MJ/N m3). Tar formation during gasification of smaller diameter pellets was low as compared to larger diameter pellets.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%