
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Computational analysis and performance optimization of a solar thermoelectric generator

Abstract Solar energy has been considered for many years one of the most reliable and predictable renewable energy resources for the production of both electricity and heat. At the moment, renewable energy market is mainly focused on photovoltaics and solar thermal systems. Quite recently, the implementation of thermoelectric generators in solar energy conversion systems, as an alternative method for exploiting the potential of this huge resource, has attracted increasing attention. In this paper, the performance of a thermoelectric-based solar conversion unit is investigated computationally, using ANSYS Workbench v. 14.0 CAE Software. The electrical output of the system under consideration has been evaluated and performance prediction has been conducted under various operating conditions, demonstrating maximum power output of 33.7 W. Moreover, different techniques are discussed in order to enhance power output and optimize system operation according to the incoming solar irradiation levels, which can differ significantly throughout the year.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).71 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
