
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Identification of critical components of wind turbines using FTA over the time


Fausto Pedro García Márquez

Jesús María Pinar Pérez

Alberto Pliego Marugán

Mayorkinos Papaelias
Wind energy is currently the most widely implemented renewable energy source in global scale. Complex industrial multi-MW wind turbines are continuously being installed both onshore and offshore. Projects involving utility-scale wind turbines require optimisation of reliability, availability, maintainability and safety, in order to guarantee the financial viability of large scale wind energy projects, particularly offshore, in the forthcoming years. For this reason, critical wind turbine components must be identified and monito red as cost-effectively, reliably and efficiently as possible. The condition of industrial wind turbines can be qualitatively evaluated through the Fault Tree Analysis (FTA). The quantitative analysis requires high computational cost. In this paper, the Binary Decision Diagram (BDD) method is proposed for reducing this computational cost. In order to optimise the BDD a set of ranking methods of events has been considered; Level, Top-Down-Left-Right, AND, Depth First Search and Breadth-First Search. A quantitative analysis approach in order to find a general solution of a Fault Tree (FT) is presented. An illustrative case study of a FT of a wind turbine based on different research studies has been developed. Finally, this FT has been solved dynamically through the BDD approach in order to highlight the identification of the critical components of the wind turbine under different conditions, employing the following heuristic methods: Birnbaum, Criticality, Structural and Fussell-Vesely. The results provided by this methodology allow the performance of novel maintenance planning from a quantitative point of view.
- University of Birmingham United Kingdom
- University of Castile-La Mancha Spain
Critical components, Wind turbine
Critical components, Wind turbine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).111 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
