Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tow testing of Savonius wind turbine above a bluff body complemented by CFD simulation

Authors: Sethu Raman Boopathy; Jorg Schluter; Chidambaresan Krishnaswami; Seach Chyr Goh;

Tow testing of Savonius wind turbine above a bluff body complemented by CFD simulation

Abstract

Abstract A simple way to improve its power coefficient (cp) of a Savonius turbine is by its installation above a cuboidal building as the building will redirect the wind and increase its speed significantly. To determine the gain, a turbine was constructed and installed above a bluff body and tow tested. Detailed measurements of vehicle speed and turbine power were made. Tow test speeds were 8, 10 and 12 m/s, while TSR range was 0.6–1.1. Most importantly, wind speed at the position beside and slightly above the turbine was measured during test runs. The cp calculated using this measured wind speed was used to validate CFD simulation results. Simulation results were also used to obtain the relationships between the wind speed of the free stream and at the anemometer position. Typically, wind speed at the anemometer position is about 9% higher than those of the free stream. These relationships were used to derive the free stream wind speed of each experimental run. The cp calculated using these derived free stream wind speeds showed an increase of 25% at 12 m/s wind speed, compared to the cp reported by previous researchers for a similar turbine operating in unmodified air flow.

Powered by OpenAIRE graph
Found an issue? Give us feedback