Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2016
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2016
Data sources: IRIS Cnr
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel

Authors: di Bitonto Luigi; Lopez Antonio; Mascolo Giuseppe; Mininni Giuseppe; Pastore Carlo;

Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel

Abstract

A very efficient separation of lipids from wet sewage scum was optimised and positively tested on samples taken from several wastewater treatment plants (WWTPs). By simply heating sewage scum at 353 K and centrifuging the heated mass at 4000 rpm per 1 min, a recoverability of 93-99% of total oils was always obtained. This procedure resulted to be effective on samples with very different starting water contents. In all cases, extracted lipids have a very similar composition in terms of free fatty acids (FFAs), calcium soaps (32-40%wt) and glycerides (mono-, di- and tri-glycerides were practically absents), as well as fatty acid profiles. Once separated, lipids were converted into biodiesel through a direct esterification process carried out by adopting three sequential batch reactors, in which methanol and catalysts were charged in counter current. In this way, the complete conversion (>99%) of starting FFAs into FAMEs was perfectly matched with using the minimum amount of reactants under very mild conditions (345 K, 2 h). The overall convenience of the process was completed by the anaerobic digestion of fibrous residues obtained from centrifugation of starting sewage scum: the final biogas resulted largely enough to sustain the heat of process. (C) 2015 Elsevier Ltd. All rights reserved.

Country
Italy
Keywords

Centrifugation, Sewage scum, FAMEs, Direct esterification, Biodiesel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%