
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Pyrolysis of Cedrus deodara saw mill shavings in hydrogen and nitrogen atmosphere for the production of bio-oil

Abstract Pyrolysis of deodar has been carried out at 350 and 400 °C at 0.1, 1, 2 and 3 MPa hydrogen pressure. Pyrolysis under nitrogen atmosphere has been carried out at 300, 350, 400 and 450 °C. The favourable process conditions under hydrogen environment were found to be 400 °C and 2 MPa pressure and in case of nitrogen environment was found to be 350 °C. The products have been characterised using GC–MS, 1 H NMR, FT-IR and SEM. It has been observed that the bio-oil is rich in phenolic compounds under nitrogen and hydrogen atmospheres. Selectivity towards certain compounds such as catechol, vanillin and its derivatives etc. are high under hydrogen atmosphere. Deodar has undergone decomposition significantly which is evident by the absence of most functionality in bio-char and loss of crystallinity. The products formed under hydrogen and nitrogen environments are different from each other owing to the differences in reaction mechanism.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
