Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modified plastic net-houses as alternative agricultural structures for saving energy and water in hot and sunny regions

Authors: Abdel Ghany, A. M.; Al Helal, I. M.; Shady, M. R.; PICUNO, Pietro;

Modified plastic net-houses as alternative agricultural structures for saving energy and water in hot and sunny regions

Abstract

The transmitted radiation into the conventional net-houses is very low in the early morning and late afternoon that may not fulfill the crop growth requirements. To solve this problem, two types of net-house models (polygon and curved-arch net-houses) were newly designed, each having seven surfaces made up of different net types. The spectral radiative properties of 32 nets were examined and three nets were selected to cover the surfaces of each model. The two designs showed high transmittance in the morning and afternoon, and low at around noon (U shape). The polygon style was scaled-up and an experiential net-house was constructed with a floor area of 28 m2. An evaporatively-cooled greenhouse with a floor area of 28 m2 was used for comparison; each floor was planted with 500 potted Chrysanthemum plant. The results showed that the PAR and microclimate in the net-house and cooled greenhouse were similar. The net-house reduced water consumption by 13 kg m−2 day−1 in summer and by 0.94 kg m−2 day−1 in winter; and reduced electric energy consumption by 0.26 kw-h m−2 day−1 in summer and by 0.18 kw-h m−2 day−1 in winter compared to the greenhouse.

Country
Italy
Related Organizations
Keywords

Energy, 720, Net-house, Water consumption, Solar radiation, Hot climate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%