Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module's model

Authors: Dhiaa Halboot Muhsen; Abu Bakar Ghazali; Tamer Khatib; Issa Ahmed Abed;

A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module's model

Abstract

This paper proposes different evolutionary algorithms, such as differential evolution and electromagnetism-like algorithms, to extract the five parameters of a single-diode photovoltaic module's model. Hybrid evolutionary algorithms are proposed with integrated and adaptive mutation per iteration schemes. In addition, a new formula to adjust the mutation scaling factor and crossover rate for each generation is proposed. Analyses are performed based on experimental data points under different weather conditions to explain the robustness and reliability of the proposed methods. Results show that the proposed hybrid algorithms, namely, evolutionary algorithm with integrated mutation per iteration and evolutionary algorithm with adaptive mutation per iteration, exhibit better performance than electromagnetism-like algorithm and other methods in terms of accuracy, CPU execution time, and convergence. The proposed hybrid algorithms offer a root mean square error, mean bias error, coefficient of determination and CPU execution time around 0.062, 0.006 and 0.992, and less than 20 s respectively. Furthermore, the feasibility of the proposed methods is validated by comparing the obtained results with those of other methods under various statistical errors. As a conclusion, the proposed hybrid algorithms offer root mean square error and mean bias error less than other methods by 14% at least.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 1%
Top 10%
Top 10%