
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Large-scale experiments on the behaviour of a generalised Oscillating Water Column under random waves

Abstract This work investigates wave reflection and loading on a generalised Oscillating Water Column (OWC) wave energy converter by means of large scale (approximately 1:5–1:9) experiments in the Grosse Wellenkanal (GWK), in which variation of both still water depth and orifice (PTO) dimension are investigated under random waves. The model set-up, calibration methodology, reflection analyses and loadings acting on the OWC are reported. On the basis of wave reflection analysis, the optimum orifice is defined as that restriction which causes the smallest reflection coefficient and thus the greatest wave energy extraction. Pressures on the front wall, rear wall and chamber ceiling are measured. Maximum pressures on the vertical walls, and resulting integrated forces, are compared with available formulations for impulsive loading prediction, which showed significant underestimation for heaviest loading conditions. The present study demonstrates that a OWC structure can serve as a wave absorber for reducing wave reflection. Thus it can be integrated in vertical wall breakwaters, in place of other perforated low reflection alternatives. The possibility to convert air kinetic into electric energy, by means of a turbine, may give an additional benefit. Thus the installation of such kind of energy converters becomes interesting also in low energy seas.
- Università degli studi di Salerno Italy
- University of Campania "Luigi Vanvitelli" Italy
- University of Campania "Luigi Vanvitelli" Italy
- HR Wallingford United Kingdom
- University of Catania Italy
Wave reflection, Oscillating Water Column, Wave energy converter; Oscillating Water Column; Physical model, Wave energy converter, Physical model
Wave reflection, Oscillating Water Column, Wave energy converter; Oscillating Water Column; Physical model, Wave energy converter, Physical model
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).94 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
