
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance changes of a floating offshore wind turbine with broken mooring line

Abstract In the present study, a series of numerical simulations of the performance changes of a Floating Offshore Wind Turbine (FOWT) with broken mooring line was carried out. For this simulation, an aero-hydro-servo-elastic-mooring coupled dynamic analysis were carried out in the time domain. The OC4 DeepCwind semisubmersible with NREL's 5-MW baseline turbine was selected as a reference platform. One of the three mooring lines was intentionally disconnected from the floating platform at a certain time. The resulting transient/unsteady responses and steady-state responses after that, mooring line tensions, and turbine performance were checked. The accidental disconnection of one of the mooring lines changes the watch circle of the floating platform and the tensions of the remaining mooring lines. In addition, the changes in the platform orientation also cause nacelle yaw error, which is directly related to the power production and structural fatigue life. When horizontal offset becomes large, power-line is likely to be disconnected and its influence was also investigated. To ensure the sustainability of a series of FOWTs associated with farm development, the influence of mooring line failure and resulting changes to the turbine performance should be checked in advance. Otherwise, successive failure of neighboring FOWTs could take place.
- The University of Texas System United States
- Jeju National University Korea (Republic of)
- Jeju National University Korea (Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).101 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
