
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Increased ground temperatures in urban areas: Estimation of the technical geothermal potential

Abstract Many cities leave a considerable thermal footprint in the subsurface. This is caused mainly by accelerated heat fluxes from warmed basements, pavements and buried infrastructures. Even though rough estimations of the theoretical heat content in urban ground exist, there is no insight available on the technical potential of such subsurface urban heat islands. By considering borehole heat exchangers (BHEs) for geothermal exploitation, new opportunities arise for planning sustainable systems within cities through utilization of accelerated ground heat input from urban structures. This is feasible at moderate heat extraction rates even without any active (seasonal) recharging of the BHEs. For typical conditions in central Europe and a given system’s life time, each additional degree of urban ground heating could save around 4 m of the borehole length for the same heating power supply. We inspect implications for a single BHE as well as complete coverage of cities, which is approximated by an infinite field of BHEs. The results show that shallower systems favour renewable operation, and urban technical potential of geothermal use increases by up to 40% when compared to rural conditions.
- Karlsruhe Institute of Technology Germany
- ETH Zurich Switzerland
Geography & travel, info:eu-repo/classification/ddc/910, 910, ddc:910
Geography & travel, info:eu-repo/classification/ddc/910, 910, ddc:910
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).79 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
