Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter

Authors: Ahmed Elhanafi; Alan Fleming; Gregor Macfarlane; Zhi Leong;

Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter

Abstract

Understanding the hydrodynamic performance of offshore Oscillating Water Column (OWC) devices is essential for assisting the development and optimization processes. The chamber underwater geometry is one of the paramount design aspects that strongly affect the wave–OWC interactions. This paper utilizes a well–validated two–dimensional, fully nonlinear Computational Fluid Dynamics (CFD) model to investigate the impact the underwater front and rear lips have on the hydrodynamic performance of an offshore stationary OWC. An extensive campaign of numerical simulations is performed to discover the relevance of the front and rear lip submergence and thickness to OWC performance. The key finding is that the overall hydrodynamic efficiency can be significantly improved over a broad frequency bandwidth by selecting suitable values for both the submergence ratio of asymmetric lips and the lip thickness. The device that is capable of absorbing a large amount of the incoming wave energy provides the maximum power extraction efficiency and the maximum energy losses. The optimal combination achieved a peak efficiency exceeding 0.79, which represents a massive enhancement over more simplistic, but commonly accepted, geometries that returned peak efficiencies of approximately 0.30.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 1%