
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion

Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion
Abstract Novel and efficient multi-SO3H functionalized mesoporous polymeric solid acid (PD-En-SO3H) was synthesized from sulfonation of ethylenediamine (En)-functionalization of mesoporous polydivinylbenzene (PD). The catalyst was characterized by XPS, FT-IR, N2 adsorption-desorption, TEM, SEM, TG and elemental analysis. Characterizations suggest that PD-En-SO3H possess abundant mesoporosity, high BET surface area (369.00 m2/g) and high acidity (2.10 mmol/g). The catalytic activity was investigated for biodiesel (BD) production by esterification of various free fatty acids (FFAs) and synthesis of levulinate esters (BD additive) from fructose. The effects of reaction conditions such as reaction temperature, reaction time, molar ratio of methanol to oil and catalyst amount on conversion of oleic acid were also explored. Interestingly, PD-En-SO3H showed excellent catalytic performance, which was more active than commercial Amberlyst 15 and Nafion NR50. Moreover, it could be reused for four times and still maintained high catalytic activity.
- Guizhou University China (People's Republic of)
- East China University of Science and Technology China (People's Republic of)
- Guizhou University China (People's Republic of)
- East China University of Science and Technology China (People's Republic of)
2 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
