Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Theoretical and numerical study on performance of the air-source heat pump system in Tibet

Authors: Liyue Zeng; Ling Xie; Zongsheng Liu; Yongcai Li; Lulu Yang; Wuyan Li; Jun Lu;

Theoretical and numerical study on performance of the air-source heat pump system in Tibet

Abstract

Abstract Air source heat pump (ASHP) technology is widely accepted for the merits of energy-saving and environmental protection, and has been served as the heating and cooling source in most part of China. This paper presents a numerical model to predict the performance of a typical ASHP system in Lhasa, the capital of Tibet Autonomous Region of China. The theoretical analysis shows that the occurrence of the frost is hard to be found on air-side heat exchanger due to the low relative humidity, which can improve the performance of the ASHP system. The numerical results show that the ambient air temperature and atmospheric pressure have a great effect on the system performance. For the case of without considering frosting problem, the COP of the system is reduced by 9.5%–12.5% than that for standard pressure (101.325 kPa). The heating capacity of the system is reduced by 16.2%–19.8% than that for standard pressure. For the case of considering frosting problem, the heating capacity and COP of the ASHP system in Lhasa are 37.5 kW and 1.98, respectively under the outdoor design temperature, which are almost same or higher than most cities in this study.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%