
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Detection of natural crack in wind turbine gearbox

Abstract One of the most challenging scenarios in bearing diagnosis is the extraction of fault signatures from within other strong components which mask the vibration signal. Usually, the bearing vibration signals are dominated by those of other components such as gears and shafts. A good example of this scenario is the wind turbine gearbox which presents one of the most difficult bearing detection tasks. The non-stationary signal analysis is considered one of the main topics in the field of machinery fault diagnosis. In this paper, a set of signal processing techniques has been studied to investigate their feasibility for bearing fault detection in wind turbine gearbox. These techniques include statistical condition indicators, spectral kurtosis, and envelope analysis. The results of vibration analysis showed the possibility of bearing fault detection in wind turbine high-speed shafts using multiple signal processing techniques. However, among these signal processing techniques, spectral kurtosis followed by envelope analysis provides early fault detection compared to the other techniques employed. In addition, outer race bearing fault indicator provides clear indication of the crack severity and progress.
- Coventry University United Kingdom
- University of Hertfordshire United Kingdom
- University of Hertfordshire United Kingdom
- Coventry University United Kingdom
- Cranfield University United Kingdom
Signal processing, Rotating machinery, Natural cracks, 621, Vibration, Condition monitoring
Signal processing, Rotating machinery, Natural cracks, 621, Vibration, Condition monitoring
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).38 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
