
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling

handle: 2158/1120180
Abstract This study presents an evaluation of the error induced by neglecting the effect of air compressibility in modelling Oscillating Water Column (OWC) wave energy converters. A compressible two phases CFD model in the open-source software package OpenFOAM® is validated and then used to simulate a fixed OWC device, detached from the sea bottom. A comparative analysis of the results obtained by simulating the device at full-scale (1:1) and at four smaller scales (1:50, 1:25, 1:10 and 1:5) is performed in order to assess the scale effects associated with air compressibility. Indeed, for the air pressure levels considered in the simulations (up to 350 Pa at model scale 1:50), the effect of neglecting the air compressibility results in an overestimation up to about 15% for the air pressure in the OWC chamber and the subsequent air volume flux, but less than 10% for the capture width ratio. This overestimation increases with increasing pressure level. Results are analysed in terms of dimensionless parameters and a new parameter, strongly related to the compressible effects, is proposed and used to provide generalized equations delivering correction factors.
Air compressibility; Correction factors; Numerical study; Oscillating Water Column; Scale effects; Wave energy converters; Renewable Energy, Sustainability and the Environment
Air compressibility; Correction factors; Numerical study; Oscillating Water Column; Scale effects; Wave energy converters; Renewable Energy, Sustainability and the Environment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).103 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
