Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

International vs. domestic bioenergy supply chains for co-firing plants: The role of pre-treatment technologies

Authors: Mauro, Caterina; Rentizelas, Athanasios A.; Chinese, Damiana;

International vs. domestic bioenergy supply chains for co-firing plants: The role of pre-treatment technologies

Abstract

Co-firing of solid biomass in existing large scale coal power plants has been supported in many countries as a short-term means to decrease CO2 emissions and rapidly increase renewable energy shares. However, many countries face challenges guaranteeing sufficient amounts of biomass through reliable domestic biomass supply chains and resort to international supply chains. Within this frame, novel pre-treatment technologies, particularly pelletization and torrefaction, emerged in recent years to facilitate logistics by improving the durability and the energy density of solid biomass. This paper aims to evaluate these pre-treatment technologies from a techno-economic and environmental point of view for two reference coal power plants located in Great Britain and in Italy. Logistics costs and carbon emissions are modelled for both international and domestic biomass supply chains. The impact of pre-treatment technologies on carbon emission avoidance costs is evaluated. It is demonstrated that, for both cases, pre-treatment technologies are hardly viable for domestic supply. However, pre-treatment technologies are found to render most international bioenergy supply chains competitive with domestic ones, especially if sourcing areas are located in low labour cost countries. In many cases, pre-treatment technologies are found to guarantee similar CO2 equivalent emissions performance for international compared to domestic supply chains

Countries
Italy, United Kingdom
Keywords

HD, 670, GE, 330, Bioenergy; Biomass supply chain; Carbon equivalent emissions; Co-firing; International logistics; Pelletization; Torrefaction; Renewable Energy, Sustainability and the Environment, Industries. Land use. Labor, Environmental Sciences

Powered by OpenAIRE graph
Found an issue? Give us feedback