
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A graphene-based microporous layer for proton exchange membrane fuel cells: Characterization and performance comparison

handle: 10012/13315
A graphene-based microporous layer for proton exchange membrane fuel cells: Characterization and performance comparison
Abstract Water management is a critical issue for proton exchange membrane (PEM) fuel cells, and the use of a microporous layer (MPL) substantially improves the PEM fuel cell performance, reliability and durability through improved water management. In this study, graphene, technically a yet-to-be-developed category of material, is investigated as a potential MPL material, due to its high electrical and thermal conductivity. MPLs made of graphene (G-MPL) have been fabricated and assessed through morphological, microstructural, physical, and electrochemical characterizations and performance testing in a single scaled-up cell. Comparison is also made with MPLs made of a conventional material, Vulcan (V-MPL). The results show that the G-MPL has a unique morphology composed of horizontally packaged graphene flakes that improves water management, in-plane electrical conductivity (up to 2 times), catalyst activity, and platinum (Pt) utilization (up to 10%). The cell with the G-MPL has a better performance than the cell with the V-MPL under both fully (100% RH) and partially (40% RH) humidified conditions, with the peak power densities of 0.98 W cm−2 and 0.60 W cm−2, respectively – these peak power densities are about 7% and 43% higher than those obtained for the cell with the V-MPL at 100% and 40% RH, respectively.
- University of Waterloo Canada
- University West Sweden
- University West Sweden
Graphene-based microporous layer, Proton exchange membrane fuel cell, Water management, Microporous layer, Gas diffusion layer
Graphene-based microporous layer, Proton exchange membrane fuel cell, Water management, Microporous layer, Gas diffusion layer
7 Research products, page 1 of 1
- 1995IsAmongTopNSimilarDocuments
- 1995IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 1994IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 1997IsAmongTopNSimilarDocuments
- 1997IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).46 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
