Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification

Authors: Billel Talbi; Abdesslam Belaout; Adel Mellit; Adel Mellit; Abderrazak Arabi; Fateh Krim;

Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification

Abstract

Abstract In this paper, a Multiclass Adaptive Neuro-Fuzzy Classifier (MC-NFC) for fault detection and classification in photovoltaic (PV) array has been developed. Firstly, to show the generalization capability in the automatic faults classification of a PV array (PVA), Fuzzy Logic (FL) classifiers have been built based on experimental datasets. Subsequently, a novel classification system based on Adaptive Neuro-fuzzy Inference System (ANFIS) has been proposed to improve the generalization performance of the FL classifiers. The experiments have been conducted on the basis of collected data from a PVA to classify five kinds of faults. Results showed the advantages of using the fuzzy approach with reduced features over using the entire original chosen features. Then, the designed MC-NFC has been compared with an Artificial Neural Networks (ANN) classifier. Results demonstrated the superiority of the MC-NFC over the ANN-classifier and suggest that further improvements in terms of classification accuracy can be achieved by the proposed classification algorithm; furthermore faults can be also considered for discrimination.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 1%
Top 10%
Top 1%
bronze