Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance analysis of Parabolic Trough Collectors with Double Glass Envelope

Authors: Osorio, J.D.; Rivera-Alvarez, A.;

Performance analysis of Parabolic Trough Collectors with Double Glass Envelope

Abstract

Abstract In this work, the performance of Parabolic Trough Collectors (PTCs) with Double Glass Envelope (DGE) is studied. A one-dimensional model comprising optical and thermal analyses is developed. The effect of an Inner Glass Envelope (IGE), thermal emittance of the envelopes, and vacuum conditions in the two resulting annuli are analyzed in detail and compared with the performance of a traditional PTC. The incorporation of an additional envelope into a traditional PTC reduces heat losses. At high operating temperatures, the reduction in thermal losses achieved with the DGE PTC leads to a superior efficiency. It is found that an IGE having low emittance values could be used to reduce heat losses and replace the vacuum in conventional PTCs. In addition, in a DGE PTC, vacuum is more important in the annulus between the absorber pipe and the IGE. The effect of solar irradiance on the performance of a DGE PTC is also studied considering clear sky and partially cloudy sky day conditions. In general, higher solar irradiance values favor collectors' efficiency. Finally, the efficiency of a DGE PTC is analyzed considering a commercially architectural glass and a glass for solar applications. The DGE PTC with IGE made of a glass for solar applications exhibits higher performance than a traditional PTC at high temperatures. However, a detailed economic analysis is required in order to determine the total energy cost with the proposed DGE PTC concept. Using a DGE improves the collector efficiency at high temperatures especially during partially cloudy sky days.

Country
Colombia
Related Organizations
Keywords

Double Glass Envelope (DGE), Vacuum conditions, Thermal emittance, Efficiency, Thermal losses, Solar irradiance, Parabolic Trough Collector (PTC)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%