Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality

Authors: Syed Asfand Yar Shah; Muhammad Farooq; N. Ahmed; Muhammad Zeeshan; Naseem Iqbal;

Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality

Abstract

Abstract In this study, effect of waste tire (WT) addition to cotton stalk (CS) pyrolysis is investigated with a focus on liquid co-pyrolysis yield quantity and quality. Various blend ratios (i.e. CS/WT 1:0, 4:1, 3:2, 2:3, 0:1) of the two feedstocks were experimented in a fixed bed reactor at 20 °C/min heating ramp rate up to 550 °C with 50 ml/min flowrate of nitrogen as sweeping gas. Blend ratio CS/WT (2:3) showed maximum oil yield (48 wt%) with organic phase (OP) above 78 wt% of the total liquid yield (OP + aqueous phase, AP). OP of CS/WT (2:3) along with those of CS/WT (1:0) and (0:1) were further analyzed qualitatively using analytical techniques including, FTIR, GC-MS, bomb calorimetry and elemental analyzer. Significant increase in carbon and decrease in oxygen content of the CS/WT (2:3) pyrolytic oil was observed which improved its calorific value to 41 MJ/kg. Among the three OP samples, only CS/WT (2:3) oil showed significant presence of alkanes in GC-MS results, which is, thus, associated with the synergistic effect of the co-pyrolysis process. Addition of WT to CS pyrolysis feedstock improved liquid yield and its quality, thus requiring lesser further processing for its commercial use as compared to that of CS/WT (1:0) oil.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 1%
Top 10%
Top 1%