Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS

Authors: Bo Wang; Fanfan Xu; Peijie Zong; Jinhong Zhang; Yuanyu Tian; Yingyun Qiao;

Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS

Abstract

Abstract In this work, the effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk (JAS) were investigated fist by TG-FTIR (heating rates: 20, 30, 50, 100, 300, 500 °C/min) and then via Py-GC/MS (heating rates: 100, 1000, 5000 10000 °C/s). The results showed that with the heating rate increased, TG and DTG curves obviously shifted toward the high-temperature range, and the number of peaks in DTG curves reduced from three to two. The model-free method indicated that the apparent activation energy of JAS pyrolysis was 286 kJ/mol at the low heating rate and increased to 351 kJ/mol at the high heating rate. The distributed activation energy model showed that the value of pre-exponential factor increased with the heating rate increased and the kinetic compensation effect was obvious during the conversion from 0.3 to 0.7. Total 44 compounds were identified by GC/MS. Acid, phenol and carbonyl compounds were the major products groups. With the heating rate increased, the relative contents of acid increased whereas the relative contents of phenolic substance decreased. The yield of carbonyl compounds was maximum at the heating rate of 5000 °C/s.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 1%
Top 10%
Top 1%