Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds

Authors: Shuang Wang; Benjamin Bernard Uzoejinwa; Benjamin Bernard Uzoejinwa; Sivakumar Esakkimuthu; Bin Cao; Qian Wang; Lili Qian; +4 Authors

Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds

Abstract

Abstract Nowadays, macroalgae are widely discussed as advantageous alternative feedstock for crude bio-oil production using pyrolysis. In the present work, pyrolysis products of Enteromorpha clathrata washed with 7% phosphoric acid, hydrochloric acid and sulfuric acid were studied. In general, washing with diluted acids resulted in significant increase in the yields of bio-oil and non-condensable gas over the control in favor of the bio-char. In addition, HCl pretreatment enhanced the relative contents of aliphatic hydrocarbons in the bio-oil by 1.5 times over the control. Furthermore, HCl pretreatment showed 37% and 52.6% reduction in acids and oxygen-containing compounds, respectively, with respect to the control. FTIR analysis showed that acid-washing led to reduction in O H stretching vibration, confirming that it can disrupt hydroxyl bonds reducing phenols, carboxylic acids and water impurities in the bio-oil. In conclusion, washing of biomass using diluted acids could play a key role to enhance the bio-oil yield and significantly influence products characteristics; particularly, HCl enhanced bio-oil yield with higher aliphatic hydrocarbons proportion.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 1%