Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regional water footprints assessment for hydroelectricity generation in China

Authors: Xiaoyun Jiang; Tingting Zhang; Zhen Huang; Xiaomin Xie;

Regional water footprints assessment for hydroelectricity generation in China

Abstract

Abstract Hydropower is a crucial no-fossil energy source, but it may cause environmental damages by huge water consumption mainly from evaporation. Facing great hydroelectric capacity and water scarcity issue in China, water loss from hydropower deserves further valuation. This study used water footprint (WF) concept, employed the gross and net approach, collected domestic data, and evaluated China’s national and regional WFs for hydroelectricity. Dam inventories were conducted covering 300 hydropower plants. WFs were calculated considering local evaporation, evapotranspiration, allocation for multi-purpose reservoirs, and were evaluated by China’s province for the first time. The results illustrated a significant regional variation. The average gross and net WF were at 3.021 (range of 0.08–122.31) L/kWh and 0.0763 (range of 0–9.638) L/kWh, respectively. WFs also showed a considerable seasonal variation with apparent regional characters. Impact of hydroelectric net WFs on local surface water was analyzed. Although hydropower WF was relatively low in China, several provinces with water scarcity issue were inappropriate for hydropower development. This research provided a comprehensive method for hydropower WF calculation and was supposed to utilize on specific region or plant. The regional results could also be a support for water management in electricity sector and for local water supply policies.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%