Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DDES analysis of the unsteady wake flow and its evolution of a centrifugal pump

Authors: Ning Zhang; Xiaokai Liu; Bo Gao; Bin Xia;

DDES analysis of the unsteady wake flow and its evolution of a centrifugal pump

Abstract

Abstract In the present paper, to investigate the unsteady wake flow and its evolution at different moments when the blade sweeps the volute tongue, numerical simulation method is applied to discuss the flow field in detail based on the DDES (Delayed Detached Eddy Simulation) model when the model pump works at the nominal flow rate. Emphasis is attracted on the relative velocity distribution, besides the typical vorticity and TKE distributions at various moments are also analyzed to obtain the turbulent characteristics of the model pump. Results show that the current method has the ability to capture the main flow structure of the model pump, especially for the jet flow. From the blade pressure side to the suction side, the relative velocity distribution shows typical jet-wake flow pattern. With the impeller rotating, the reflection point of the jet-wake flow pattern changes at the mid span of the impeller. From flow distributions on different spans of the impeller, it is noted that the relative velocity decreases from the front chamber to the back chamber at major region of the blade channel. In the model pump, it is observed that several typical high vorticity regions are generated, where the high TKE values are also expected, especially at the blade trailing edge and in the volute zone caused by the wake flow. So it is inferred that for the unsteady flow in the pump and the corresponding induced pressure pulsation, controlling the wake flow is an effective approach to lower the unsteady flow pulsation in the centrifugal pump.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 1%
Top 10%
Top 1%