
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Co-ensiling of cover crops and barley straw for biogas production

Co-ensiling of cover crops and barley straw for biogas production
Abstract The study investigated the effect of co-ensiling of cover crops (CC) and barley straw (BS) on biogas production. Blends containing chopped CC and BS (mix ratios of 1:0, 2:1, 3:1, 6:1; 10:1 and 19:1 (w:w)) were prepared and stored for 4 months prior to the biogas batch assay. Results show that CC is feasible for producing biogas with reasonable CH4 yield (330 mL CH4 gVS−1) and has good storability. Using of co-ensiling blends showed advantages over CC as it elevated the hydrolysis rate (k) from 0.024 to 0.061 d−1 and decreased the lag phase (from 5 to 0.8 days) during the thermophilic (51 °C) batch test. Synergistic effects were observed from both CH4 yield and hemi-cellulose removal. The finding provided an alternative strategy for integrated straw management and CC utilization for improved biogas production.
- Aarhus University Denmark
Silage, Anaerobic digestion, Post harvest management and techniques, Agricultural residue, Biomass, Methane
Silage, Anaerobic digestion, Post harvest management and techniques, Agricultural residue, Biomass, Methane
12 Research products, page 1 of 2
- 2020IsAmongTopNSimilarDocuments
- 1993IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
