Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing the impact of a two-layer predictive dispatch algorithm on design and operation of off-grid hybrid microgrids

Authors: Moretti L.; Polimeni S.; Meraldi L.; Raboni P.; Leva S.; Manzolini G.;

Assessing the impact of a two-layer predictive dispatch algorithm on design and operation of off-grid hybrid microgrids

Abstract

Abstract The high uncertainty associated with renewable power production limits renewable energy penetration in off-grid systems. Advanced control strategies allow for a more effective exploitation of non-dispatchable sources. This paper presents a two-layer predictive management strategy for an off-grid hybrid microgrid featuring controllable and non-controllable generation units and a storage system. The upper layer deals with the unit commitment, while the second layer regulates real-time operation, applying a response filter to smooth out genset load variation. The algorithm is tested on data from a real rural microgrid in Somalia, performing minute-by-minute simulations. Results are compared to the currently deployed management strategy and to a new improved heuristic algorithm. The two new methods attain a fuel consumption reduction with respect to the previous management system of about 15%. Finally, a new configuration for the Somalian microgrid is evaluated, in the two cases where the predictive or heuristic management strategies are adopted. The comparison of the two optimal solutions demonstrates that the adoption of the proposed predictive strategy leads to a 6.5% cut of the overall system cost, ensuring at the same time a 24.1% fuel consumption reduction with respect to the best heuristic solution and attaining a renewable penetration as high as 65.1%.

Related Organizations
Keywords

Energy management system; Microgrid; MILP optimization; Off-grid systems; Two-layer dispatch algorithm

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 1%
Top 10%
Top 1%