Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coevaporated Cd1-xMgxTe thin films for CdTe solar cells

Authors: Lili Wu; Mingzhe Yu; Wei Li; Xia Hao; Jingquan Zhang; Ye Feng; Taowen Wang; +1 Authors

Coevaporated Cd1-xMgxTe thin films for CdTe solar cells

Abstract

Abstract Substantial improvement of the open-circuit voltage of thin film solar cells has been investigated by applying an electron reflector strategy. Cd1-xMgxTe has a strong potential as an electron reflector to keep minority carriers away from the CdTe back surface to reduce the back surface recombination. In this paper, SCAPS simulations were first used to investigate device performance for CdTe solar cells with the electron reflector layers. The theoretical results indicate that the ∼0.4 eV electron barrier height for CdTe solar cells with Cd1-xMgxTe (Eg∼1.85 eV) is sufficient to decrease the back surface recombination and improve device performance, especially the open-circuit voltage. Thus the variation of energy gap of the Cd1-xMgxTe thin films prepared by coevaporation as a function of x was investigated from the transmittance spectra. Then Cd1-xMgxTe (x∼0.3) thin films were used as the electron reflectors for the CdTe thin film solar cells. It is found that CdTe solar cells with Cd1-xMgxTe yielded open-circuit voltage of 804 mV and fill factor more than 70% after an 425 °C anneal, which is higher than those without Cd1-xMgxTe. The electron reflector in CdTe solar cells can effectively reduce the carrier surface recombination, thereby resulting in the increase of the fill factor and the open-circuit voltage.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research