Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Wood surface treatment techniques for enhanced solar steam generation

Authors: orcid Mohammad Mustafa Ghafurian;
Mohammad Mustafa Ghafurian
ORCID
Harvested from ORCID Public Data File

Mohammad Mustafa Ghafurian in OpenAIRE
orcid Robert A. Taylor;
Robert A. Taylor
ORCID
Harvested from ORCID Public Data File

Robert A. Taylor in OpenAIRE
orcid Ehsan Ebrahimnia-Bajestan;
Ehsan Ebrahimnia-Bajestan
ORCID
Harvested from ORCID Public Data File

Ehsan Ebrahimnia-Bajestan in OpenAIRE
Ehsan Ebrahimnia-Bajestan; orcid bw Hamid Niazmand;
Hamid Niazmand
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Hamid Niazmand in OpenAIRE

Wood surface treatment techniques for enhanced solar steam generation

Abstract

Abstract Water vapor is vital both as an energy carrier and as an intermediary state for removing impurities from water. In nature, transpiration occurs when water is transported (against gravity) from the roots to the underside of leaves where it evaporates. Using this process, one large tree can pump and purify 400 L of water each day. Based on trunk cross-sectional area, this corresponds to a water flux range of ∼100–1000 kg/m2day, but based on evaporation area it only corresponds to a rate of ∼0.1 kg/m2day. Compared to industrial mechanisms of producing water vapor (i.e. typical thermal-driven systems have a flux of ∼4000 kg/m2day), natural wood has a relatively low flux. In an effort to boost the flux of sustainable, natural wood, we investigated wood surface modifications, laser carbonization and deposition of gold nanolayers, which achieved an instantaneous evaporation rate of ∼4 kg/m2h—under 3 kW/m2 light intensity, exceeding all previous studies of synthetic materials (including 3.8 kg/m2h reported by Zhou et al. in a 2016 Nature Photonics article) for solar steam generation applications. The cost analysis of different natural and synthetic material-based techniques for solar steam generation indicated that the carbonization and laser treatments are very cost-effective and even the gold coating was comparable to previously reported synthetic materials. Based on these results, we suggest that natural, surface-modified poplar wood could represent a viable alternative to synthetic materials for liquid/vapor separation.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 1%
Top 10%
Top 1%
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?