Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2020
Data sources: VBN
versions View all 3 versions
addClaim

Precise prediction of biogas thermodynamic properties by using ANN algorithm

Authors: Mahmood Farzaneh-Gord; orcid Behnam Mohseni-Gharyehsafa;
Behnam Mohseni-Gharyehsafa
ORCID
Harvested from ORCID Public Data File

Behnam Mohseni-Gharyehsafa in OpenAIRE
orcid Ahmad Arabkoohsar;
Ahmad Arabkoohsar
ORCID
Harvested from ORCID Public Data File

Ahmad Arabkoohsar in OpenAIRE
Mohammad Hossein Ahmadi; orcid Mikhail A. Sheremet;
Mikhail A. Sheremet
ORCID
Harvested from ORCID Public Data File

Mikhail A. Sheremet in OpenAIRE

Precise prediction of biogas thermodynamic properties by using ANN algorithm

Abstract

There are technical problems related to storage and transport of biogas gas that should be addressed before practical injection of these fuels into the existing natural gas networks. In addition, their different final applications resulting in the presence of various components and in various concentrations make the problem harder. Therefore, it is indispensable for designers of the pipeline network to know exactly what the thermodynamic properties of a gas mixture are, especially its density, which would vary a lot. In this work, a MLP (Multi-layer Perceptron) neural network is used for the development of the desired biogas properties predictor model. In order to train the network, the biogas thermodynamic properties created using ISO 20765-2 (2015) (where applicable) and experimental values are employed. Results are compared with the values estimated from the GERG2008 equations of state, which are the reference equations for natural gases and experimental values. The results indicate that the developed MLP model presents a high accuracy in the calculations over a wide range of biogas mixtures and input properties ranges for all the output properties including density, compressibility factor, isochoric heat capacity, isobaric heat capacity, isentropic exponent, internal energy, enthalpy, entropy, Joule-Thomson coefficient, and speed of sound. The Root Mean Square Error (RMSE) of the mentioned properties of test data are 0.00012536, 0.00016593, 0.0025213, 0.0016208, 0.00337, 0.0096329, 0.0099837, 0.0035625, 0.01055, and 0.00039428 respectively.

Country
Denmark
Keywords

Artificial neural network, Biogas, GERG2008 equation of state, Thermodynamic properties, Multilayer perceptron

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%