Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Renewable Energy
Article . 2020 . Peer-reviewed
http://dx.doi.org/10.1016/j.re...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicted direct solar radiation (ECMWF) for optimized operational strategies of linear focus parabolic-trough systems

Authors: Lopes, Francis M.; Conceição, Ricardo; Fasquelle, Thomas; Silva, Hugo G.; Salgado, Rui; Canhoto, Paulo; Collares-Pereira, Manuel;

Predicted direct solar radiation (ECMWF) for optimized operational strategies of linear focus parabolic-trough systems

Abstract

Abstract Day-ahead forecasts of direct normal irradiance (DNI) from the Integrated Forecasting System (IFS), the global model of the European Centre for Medium-Range Weather Forecasts (ECMWF), are used to simulate a concentrating solar power (CSP) plant through the System Advisor Model (SAM) to assess the potential value of the IFS in the electricity market. Although DNI forecasting from the IFS still demands advances towards cloud and aerosol representation, present results show substantial improvements with the new operational radiative scheme ecRad (cycle 43R3). A relative difference of approximately 0.12% for the total annual energy availability is found between forecasts and local measurements, while approximately 10.6% is obtained for the previous version. Results of electric energy injection to the grid from a simulated linear focus parabolic-trough system shows correlations coefficients of approximately 0.87 between hourly values of electric energy based on forecasted and measured DNI, while 0.92 are obtained for the daily values. In the context of control strategy, four operational strategies are given for different weather scenarios to handle the energy management of a CSP plant, including the effect of thermal energy storage capacity. Charge and discharge operational strategies are applied accordingly to the predicted energy availability.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%