
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Shape-controllable binderless self-supporting hydrogel anode for microbial fuel cells

Abstract Microbial fuel cells (MFCs) are potentially used for electricity generation, but their low power output hinders their practical application. This study presents novel, porosity binderless PPy–CS–CNT hydrogel materials, which were prepared using Fe(NO3)3 as an initiator. It can be seen from the results of SEM and swelling ratio that the prepared material had a uniform structure with rich three-dimensional porosity and showed good water retention performance. Electrochemical tests showed that the charge transfer impedance (Rct) of PPy–CS–CNT anode displayed a reduction in comparison with PPy anode (1.06 Ω vs. 2.20 Ω). And the power density of MFC with PPy–CS–CNT anode reached 364 mW m−2, which was 1.36 times as much as that of MFC with PPy anode. High-throughput sequencing results showed that the PPy–CS–CNT hydrogel bioanode exhibits good biocompatibility and selective enrichment of electrogenic bacteria. The dominant genera on PPy–CS–CNT hydrogel anode are the electroactive bacteria, Rhodopsedomonas (47.69%) and Geobacter (8.47%). Therefore, the PPy–CS–CNT hydrogel anode showed a potential for improving the electricity production performance of MFCs.
- Harbin Engineering University China (People's Republic of)
- Harbin Engineering University China (People's Republic of)
- Harbin University of Commerce China (People's Republic of)
- Harbin University of Commerce China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
