Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition

Authors: Bony John; Rony N. Thomas; James Varghese;

Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition

Abstract

Abstract Hydrokinetic turbine (HKT) generates electricity from the kinetic energy of flowing water and is suitable for energizing remote communities living in the proximity of rivers or canals. In this paper, a procedure for sizing components of a standalone hybrid energy system involving hydrokinetic turbine, photovoltaic and battery storage system is explained. Appropriate choices of optimum number and size of HKT modules, PV array capacity and minimum storage requirement are essential for the success of HKT-PV-battery system. The hydrokinetic turbine is modelled as a Savonius turbine and the performance parameters are established using ANSYS. Determination of the system design space is explained with an illustrative example, based on a time series simulation of the entire system. The sizing curve of the hybrid system is generated by plotting the PV array rating vs storage capacity diagram for a specified number of HKT modules. A parametric study of hydrokinetic turbine is conducted to generate a set of sizing curves and the best system configuration is identified.

Powered by OpenAIRE graph
Found an issue? Give us feedback