
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Towards sequential bioethanol and l-lactic acid co-generation: Improving xylose conversion to l-lactic acid in presence of lignocellulosic ethanol with an evolved Bacillus coagulans

Towards sequential bioethanol and l-lactic acid co-generation: Improving xylose conversion to l-lactic acid in presence of lignocellulosic ethanol with an evolved Bacillus coagulans
Abstract A wide range of biofuels and bio-based products can be produced from lignocellulose considering its high compositional diversity. Ethanol production by yeasts from cellulosic glucose is well-known, while hemicellulosic xylose utilization is still challenging. This work proposes the use the xylose for l -lactic acid fermentation. In this context, a sequential cultivation of Saccharomyces cerevisiae and the C5-utilizing Bacillus coagulans is studied. High ethanol yields, around 0.44 g g−1, were obtained from a cellulosic-gardening hydrolysate. The high ethanol concentrations did not affect the evolved B. coagulans A20-EXA obtained by adaptive evolution to ethanol. As a result, 2.6-fold increase in lactic acid yield was achieved when compared with parental B. coagulans strain in presence of 5% (v v−1) ethanol. These results demonstrated the suitability of B. coagulans A20-EXA to be used together with S. cerevisiae for the sequential co-generation of ethanol and lactic acid from lignocellulosic biomass in a biorefinery approach.
5 Research products, page 1 of 1
- 2014IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
