
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes

Abstract High-performance harvesting of waste heat energy and its conversion into electric energy via thermo-electrochemical cells is an essential strategy of renewable energy development. Even though there is a large amount of scientific research available, but due to expensive electrode materials and low efficiency, the thermo-electrochemical cells have not found practical application. Here we demonstrated thermo-electrochemical cell with nickel (Ni) hollow microspheres-based electrodes, provided the highest hypothetical Seebeck coefficient of 4.5 mV/K (for aqueous electrolyte based thermocells) until today and open-circuit voltage values of up to 0.2 V. High values of Seebeck coefficient provide the ability to collect low-temperature heat, and high output potential differences which allow to fabricate batteries for commercial power circuits for various microelectronic devices. This work also proposed a mechanism and science behind the electrode processes, which explains a extremely high values of the hypothetical Seebeck coefficient. This is the first time to use Ni hollow microsphere in thermo-electrochemical cell for heat harvesting and thermal energy conversion into electricity. Because of the low cost of Ni microspheres electrode-based developed thermo cells could be commercially feasible for harvesting low-quality thermal energy.
- Seoul National University of Science and Technology Korea (Republic of)
- Plekhanov Russian University of Economics Russian Federation
- National University of Science and Technology Russian Federation
- Plekhanov Russian University of Economics Russian Federation
- Yuri Gagarin State Technical University of Saratov Russian Federation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).40 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
