Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermophilic vs. mesophilic anaerobic digestion of waste activated sludge: Modelling and energy balance for its applicability at a full scale WWTP

Authors: Ruffino B.; Cerutti A.; Campo G.; Scibilia G.; Lorenzi E.; Zanetti M.;

Thermophilic vs. mesophilic anaerobic digestion of waste activated sludge: Modelling and energy balance for its applicability at a full scale WWTP

Abstract

Abstract Sewage sludge produced in WWTPs are currently digested in mesophilic anaerobic digestion (AD) processes with the aim of recovering heat and electricity. However, often, the low biodegradability of waste activated sludge (WAS) limits the complete thermal self-sustainability of the process. This study presents the results of AD tests carried out on WAS in semi-continuous reactors (44 L and 240 L) in mesophilic (38 °C) and thermophilic (55 °C) thermal regimes. The hydraulic retention time (HRT) was 20 days and the organic loading rate (OLR) of 1 kg VS/m3∙d in all tests. The tests returned a specific methane production (SMP) of 0.120 Nm3/kg VS added for the mesophilic process (240 L reactor) and SMPs of 0.188 and 0.176 Nm3/kg VS added for the tests carried out under the thermophilic regime in 44 L and 240 L, respectively. Experimental data were modelled with a first-order rate reaction, where B0, that is the SMP after an infinite HRT, and k, the hydrolysis constant, were the key parameters. B0 and k were found equal to 0.147 Nm3/kg VS and 0.08 d−1 respectively, for the mesophilic process, and to 0.218 Nm3/kg VS and 0.350 d−1 for the thermophilic process. For the thermophilic process, the model was calibrated with the data from the 44 L reactor and validated with those from the 240 L reactor. An error of only 1% resulted. Finally, it was demonstrated that a full-scale digestion scheme, where primary and secondary sludge were digested separately, in mesophilic and thermophilic conditions respectively, and the heat of the digestates was used to heat the cold sludge, allowed to carry out the process with a complete thermal self-sustainability already at a sludge TS content of 3%.

Country
Italy
Related Organizations
Keywords

Degradation extent; Heat exchange; Hydrolysis rate; Secondary sludge; Specific methane production

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Green