
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation

Abstract The operation of power-to-X systems requires measures to control the cost and sustainability of electricity purchased from spot markets. This study investigated different bidding strategies for the day-ahead market with a special focus on Sweden. A price independent order (PIO) strategy was developed assisted by forecasting electricity prices with an artificial neural network. For comparison, a price dependent order (PDO) with fixed bid price was used. The bidding strategies were used to simulate H2 production with both alkaline and proton exchange membrane electrolysers in different years and technological scenarios. Results showed that using PIO to control H2 production helped to avoid the purchase of expensive and carbon intense electricity during peak loads, but it also reduced the total number of operating hours compared to PDO. For this reason, under optimal conditions for both bidding strategies, PDO resulted in an average of 10.9% lower levelised cost of H2, and more attractive cash flows and net present values than PIO. Nevertheless, PIO showed to be a useful strategy to control costs in years with unexpected hourly price behaviour such as 2018. Furthermore, PIO could be successfully demonstrated in a practical case study to fulfil the on-demand requirement of an industrial captive customer.
- Fachhochschule Münster Germany
- Swedish University of Agricultural Sciences Sweden
- Münster University of Applied Sciences Germany
- University College Cork Ireland
330
330
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
