Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universitat Politècn...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2020 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse

Authors: Muñoz Liesa, Joan; Royapoor, Mohammad; López Capel, Elisa; Cuerva Contreras, Eva; Rufí-Salís, Martí; Gassó Domingo, Santiago; Josa Garcia-Tornel, Alejandro;

Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse

Abstract

A major concern for sustainable development is urban systems energy consumption. A possible way to gain additional whole system energy efficiencies is to integrate rooftop greenhouses (iRTG) on unoccupied roofs. This work presents actual environmental data (2015–2018) and calibrated energy modelling results to analyze the energy symbiosis between an iRTG and the host building. Simulation results illustrate that annually 98 kWh/m2 of heating energy is passively recovered (84% during night time) from the building by the iRTG. Conversely the iRTG insulating capacity resulted in annual energy saving of 35 kWh/m2 for the host building (equal to 4% of the building’s annual energy needs). When combined an overall 128 kWh/m2 of net energy savings and 45.6 kg CO2 eq/m2 of savings are realised via iRTG. On average, iRTG daytime temperatures can be 5.1 °C warmer (summer) and -4.3 °C cooler (winter) than the building. This presents major potentials for recovery and exchange of heating and cooling energy flows through integrating heating and ventilation air conditioning systems of the building and iRTG. Hence, iRTGs can provide a source of renewable energy as well as a sink for building exhaust air to improve energy efficiencies of urban built environment and urban agriculture. The authors are grateful to the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya for the award of a research scholarship (FI-DGR 2018) to Joan Muñoz-Liesa; to the Universitat Autònoma de Barcelona for the award of a research scholarship (PIF-2017) to Martí Rufí-Salís; to the Spanish Ministry of Economy and Competitiveness (MINECO) for the financial support to the research project Fertilectiy II “Integrated rooftop greenhouses: energy, waste and CO2 symbiosis with the building. Towards foods security in a circular economy” (CTM2016-75772-C3-1-R; CTM2016-75772-C3-2-R). Authors also acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities, through the “María de Maeztu” program for Units of Excellence (MDM-2015-0552). This work was additionally enabled by the Càtedra JG Ingenieros – Universitat Politècnica de Catalunya and the UK Engineering and Physical Sciences Research Council grand EP/P001173/1. Authors also thank Oriol Baeza, Prof. Xavier Gabarrell, Prof. Joan Rieradevall and the ICTA-UAB staff for their very valuable supporting advise and help. Peer Reviewed

Countries
Spain, United Kingdom
Keywords

Industrial ecology, Agricultura urbana, :Edificació::Elements constructius d'edificis::Elements de tancament [Àrees temàtiques de la UPC], 330, Building integrated agriculture, Energy modelling, Àrees temàtiques de la UPC::Edificació::Elements constructius d'edificis::Elements de tancament, Urban agriculture, Industrial symbiosis, Energy efficiency, Roofs, Cobertes (Construcció), :Edificació::Construcció sostenible [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Edificació::Construcció sostenible

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 54
    download downloads 191
  • 54
    views
    191
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
33
Top 10%
Top 10%
Top 10%
54
191
Green