Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting

Authors: Sewdien, V.N. (author); Preece, R. (author); Rueda, José L. (author); Rakhshani, E. (author); van der Meijden, M.A.M.M. (author);

Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting

Abstract

Participation of wind energy in the generation portfolio of power systems is increasing, making it more challenging for system operators to adequately maintain system security. It therefore becomes increasingly crucial to accurately predict the wind generation. This work investigates how different parameters influence the performance of forecasting algorithms. Firstly, this work analyzes the combined influence of the input data, batch size, number of neurons and hidden layers, and the training data on the forecast accuracy across forecast horizons of 5, 15, 30 and 60 min. It was found that increasing look ahead times require among others more hidden layers and lower batch sizes. Next, the optimizer and loss function leading to the most accurate forecasts were identified. It was concluded that the Adadelta optimizer and Mean Absolute Error loss function consistently result in the best performing forecasting algorithm. Finally, it was investigated if the most accurate optimizer-loss function combination is influenced by the choice of the performance metric. Whereas the Adadelta-Mean Absolute Error pair remains the most accurate combination irrespective of the evaluation metric, a strong relation was observed between the Root Mean Square Error performance metric and Mean Square Error loss function. Analyses were performed on 12 wind farms.

Country
Netherlands
Related Organizations
Keywords

MIGRATE, Artificial neural networks, Loss functions, Optimizers, Wind, 551, Forecasting

Powered by OpenAIRE graph
Found an issue? Give us feedback