Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of partial oxidation reformer in gliding arc plasma-matrix burner

Authors: Ha Jin Kim; Young Nam Chun; June An;

Development of partial oxidation reformer in gliding arc plasma-matrix burner

Abstract

Abstract In this study, a new type of plasma-burner reformer was proposed to convert methane or biogas into high-quality energy. The novel reformer is a combined technology as a plasma combustor and a matrix burner. The sequential mechanism of in-line plasma-burner reformer can improve POX reforming in the higher hydrogen-rich gas production. In order to present the performance potential for the novel PBR, the characteristics of conversion and product gases were identified according to the O2/C ratio, total feed gas, CO2: CH4 ratio, and recirculation of reformed gas, and the results are as follows: The reforming characteristics for each variable were identified, and the optimal operating condition of the PMBR was O2/C ratio of 1.0 and total feed gas of 20 L/min. At this time, CH4 conversion was 64%, H2 selectivity was 39%, and H2/CO ratio was 1.13, which were the results applicable to the SOFC fuel cell stack for RPG (Residential Power Generator). Recirculation of reformed gas increased the amount of hydrogen and carbon monoxide, which are combustible gases, especially the amount of hydrogen. As a result, the hydrogen selectivity is improved, and high-quality gas can be produced.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Related to Research communities
Energy Research